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MIDCOURSE GUIDANCE USING M A . R  TRACKING 

AND ON-BOARD OBSERVATION DAW 

By Gerald L. Smith and Eleanor V. Harper 

Ames Research Center 
Moffett Field,  C a l i f .  

SUMMARY 

The Wiener-Kalman optimal f i l t e r i n g  technique i s  applied t o  the  problem 
of u t i l i z i n g  combined radar tracktng (range and range r a t e )  data  and on-board 
observations f o r  estimating the  t r a j ec to ry  of a space vehicle and f o r  guiding 
the  vehicle i n  c is lunar  space. Uncertainties included i n  the  problem a r e  b i a s  
and nonwhite noise i n  the  radar measurements, radar s t a t ion  locat ion e r ro r s ,  
s t a t ion  clock e r ro r s ,  and the e r ro r  i n  the  knowledge of the ve loc i ty  of l i g h t .  
The optimal use of the  data  then provides estimates of the  pos i t ion  and veloc- 
i t y  state var iables  and a l s o  of the uncer ta in t ies .  

A d i g i t a l  computer program w a s  prepared f o r  computing the  second-order 
s t a t i s t i c s  of the  estimation e r ro r s  f o r  a specif ied schedule of observations. 
Computations associated with impulsive veloci ty  corrections a re  a l s o  included, 
and the  s t a t i s t i c s  of guidance performance can be obtained. 

Results obtained show t h a t ,  i n  general ,  radar data  a re  superior t o  on- 
board observations f o r  estimating the  t r a j ec to ry .  However, the  increased accu- 
racy does not g rea t ly  enhance over-al l  guidance performance compared t o  t h a t  
a t ta inable  with only on-board observations. This i s  because by using on-board 
observations alone the t r a j ec to ry  can be determined more accurately than it can 
be control led,  the  performance i n  achieving desired end conditions being u l t i -  
mately l imited by e r ro r s  i n  the  mechanization of midcourse maneuvers. The 
r e s u l t s  a l s o  show t h a t  s ign i f icant  improvement can be achieved i n  the  knowledge 
of radar s t a t ion  locat ions and the  veloci ty  of l i g h t  by the  optimal reduction 
of radar t racking da ta .  

INTRODUCTION 

I n  references 1, 2, and 3 s tudies  were reported of an on-board midcourse 
guidance system employing Wiener-Kalman f i l t e r i n g  i n  the  t ra jectory-est imat ion 
aspect of t he  system. In  these s tudies ,  t racking data from earth-based radar 
w e r e  ignored as a source of t r a j ec to ry  information i n  the  i n t e r e s t  of deter-  
mining the  capabi l i ty  of a self-contained on-board system. 
keeping an  independent ( a l b e i t  minimal) on-board system i n  constant operation 
f o r  assuring the success of the  mission i s  evident.  However, ce r t a in ly  i n  a 
real  s i t ua t ion  ground-based data  would never be disregarded i f  it were a t  a l l  

The d e s i r a b i l i t y  of 
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reasonable t o  use it. Therefore, it i s  important that a quant i ta t ive 
evaluation be made of t he  performance a t ta inable  when both ground tracking and 
on-board observational data a re  employed. 

It i s  hypothesized i n  t h i s  paper t h a t  t he  r a w  data from a l l  sources - t h a t  
i s ,  from on-board the  vehicle and from the  ground t racking network - are avai l -  
able a t  a cen t r a l  locat ion where a l l  t he  data may be processed i n  an optimal 
fashion simultaneously. The locat ion of t h i s  computing center ( i . e . ,  i n  t he  
vehicle or someplace on the  ground) need not be considered here. 
not be necessary here t o  discuss the  a l te rna t ives  which e x i s t  for  the  configu- 
r a t ion  and in t e r r e l a t ions  of t he  on-board and ground-based systems. We s h a l l  
be in te res ted  only i n  the  qual i ty  of the  best  guidance information which can 
be generated from a l l  the  available data .  

Also, it w i l l  

A number of s tudies  have been made by various invest igators  using radar 
data (but none i n  which both radar tracking and on-board observations were 
included). Since the  problem i s  complex, i n  such s tudies  f a i r l y  d ra s t i c  s i m -  
p l i fy ing  assumptions have usual ly  been made t o  f a c i l i t a t e  obtaining numerical 
r e s u l t s .  I n  t he  present study it w a s  desired t o  avoid as many such assumptions 
as possible .  To handle the  complexities, a ra ther  massive d i g i t a l  computer 
program i s  required.  Thus, a major pa r t  of the  e f f o r t  i n  t he  study has con- 
s i s t ed  of constructing a sui table  computer program. This program i s  capable of 
t r ea t ing  a f a i r l y  complex model of e r ror  sources, but i s  l imited by the s ize  of 
the  core memory of t he  machine on which it i s  run. Nevertheless, s ign i f icant  
r e s u l t s  have been obtained, which a re  described i n  the  repor t .  

Another reason f o r  undertaking the  present study i s  t o  determine what 
d i f f i c u l t i e s ,  i f  any, might a r i s e  i n  applying the Wiener-Kalman optimal f i l t e r  
technique t o  a more complicated problem than has heretofore been considered. 
Both the  mass of observational data and the  number of var iables  included i n  the  
estimation procedure are much greater  than i n  previously reported appl icat ions.  

The theory of optimal estimation i s  not given i n  t h i s  paper since it i s  
f e l t  the  subject has already been t r ea t ed  adequately. It w i l l  be seen t h a t  t he  
appl icat ion of t he  theory made here i s  a straightforward extension of the  pre- 
vious work reported i n  references 1, 2, and 3. The posi t ion and veloci ty  of 
the  vehicle and a l s o  the  subsidiary uncertaint ies  included i n  the  problem are  
regarded as s tochast ic  s t a t e  var iables ,  and the  optimal use of observational 
data provides estimates of a l l  the  state var iables .  

An in t e re s t ing  by-product of the  present study i s  the  invest igat ion of t he  
idea of using tracking data as a d i r ec t  means of measuring, or estimating, a 
number of parameters other than those of the  t r a j ec to ry  i t s e l f .  For instance,  
tracking data may be used t o  survey the  tracking s ta t ions ,  t o  adjust  the  sta- 
t i o n  clocks, t o  ca l ibra te  the  radar b iases ,  and t o  measure the  veloci ty  of 
l i g h t .  The r e s u l t s  presented here give an idea of how well  these tasks  might 
be accomplished. 
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DESCRIPTION O F  THE PROBLEM 

The mission assumed for  most of t he  r e s u l t s  presented here i s  a circum- 
lunar f l i g h t  of 6 days duration, coming within 133 km of the  moon. 
i s  assumed t o  enter  t he  t r a j ec to ry  over t he  Atlant ic  and, a l so ,  t o  land i n  the  
Atlant ic .  The ea r th  t rack  of t h i s  t r a j ec to ry  i s  shown i n  f igure 1. A near- 
ea r th  s a t e l l i t e  f l i g h t  with a c i rcu lar  o rb i t  at  200 km a l t i t ude  i s  a l s o  used t o  
i l l u s t r a t e  t he  a b i l i t y  of t he  estimation system t o  survey the  locations of t he  
radar tracking s ta t ions .  

The vehicle 

For analyzing the  guidance performance on the  circumlunar mission, a 
l i nea r  prediction fixed-time-of-arrival guidance l a w  i s  assumed. This type of 
guidance i s  described i n  reference 2.  

Observations a re  assumed t o  consist  of two types:  on-board opt ica l  obser- 
vations and earth-based radar tracking measurements. The on-board observations 
may be e i the r  (1) theodolite-type measurements of t he  direct ion of the  l i n e  of 
s ight  t o  the  ear th  or moon, or (2)  sextant-type measurements of the angle 
between a selected star and the  center of the  ear th  or moon. The radar meas- 
urements a re  of the  range and range-rate type.  A network of s ix  tracking sta- 
t i ons  i s  assumed, which may be a r b i t r a r i l y  located.  The par t icu lar  s t a t ion  
s i t e s  assumed f o r  t he  r e s u l t s  given here a re  shown i n  f igure 1. The radar 
tracking measurements a re  assumed t o  depend on an act ive transponder on the  
space vehicle,  t he  transponder having only three  channels so  t h a t  only three  
s ta t ions  may t rack a t  any one time. 

The e r ror  model assumed f o r  the  on-board observations i s  the  same as that  
used i n  references 2 and 3; t h a t  i s ,  the  standard deviation of the e r ror  i n  
measuring an angle (by means of e i the r  a theodol i te  or a sextant)  i s  given by 
the  formula 

~ ~- 

a = + (0.001 e ) 2  sec a rc  (1) 

where i s  one-half the subtended angle of t he  observed body (ear th  or moon) 
expressed i n  seconds of a r c .  Observation e r ro r s  a re  assumed uncorrelated from 
one observation t o  the next.  

8 

In  the  e r ror  model f o r  the  range, R,  and range-rate, R,  measurements, 
receiver noise, coherent o sc i l l a to r  i n s t a b i l i t y ,  quantization and time, 7, 
measurement e r ro r s ,  and unspecified bias-type e r ro r s  were assumed t o  be the  
pr inc ipa l  sources of e r ro r .  The development of t he  model w a s  ra ther  rudimen- 
t a r y  and not intended t o  refer t o  any par t icu lar  radar system. However, t he  
model i s  considered more or l e s s  representative and furthermore contains a num- 
ber of parameters which can be changed t o  simulate an ac tua l  radar system. The 
model assumes three  uncoupled e r ro r  sources contributing t o  each of t he  two 
measurements (range and range r a t e )  f o r  each s t a t ion .  
sources i s  "white" noise (i .e . ,  measurement e r ro r s  uncorrelated f r o m  one sam- 
pl ing t o  t he  next) ,  and the  other two are correlated noise with d i f fe ren t  cor- 
r e l a t ion  times. Noise with a short  correlat ion t i m e  i s  termed "colored" noise, 
and with a long correlat ion time "bias." 
following values of standard deviations and time constants were used: 

One of these e r ro r  

For the  r e s u l t s  given here, t he  
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Range e r ro r s  

White 0 = 5.25 meters 

White 

Colored o = 7 . 6 7 ~ 1 0 - ~  R meter, T = 7.5 see 

B i a s  0 = 10 meters, T = 4x104 see 

Range-rate e r ro r s  

02 = 2 ~ l O - ~ ~ ( l  + 0.03 fi)2R2 + 6.5~10'~(1 -I- 0.03 G)'% 
+ Z X ~ O - ~ ( ~  + 0.03 f i ) 4  + 2 . 5 ~ 1 0 - ~  meter/sec 

Colored 

B i a s  

0 = 0.05 meter/sec, T = 0.2 see 

o = 0.05 meter/sec, T = 4 x 1 0 ~  see 

The constants employed i n  t h i s  model may be changed (since they are inputs t o  
the  program) t o  simulate d i f fe ren t  tracking uncer ta in t ies .  

P lo ts  of t he  rms sums of these 0's  f o r  an assumed Johannesburg s t a t ion  
a re  shown i n  f igure 2. These curves represent the  t o t a l  rms er ror  i n  the  range 
and range-rate measurements as functions of time for  t h i s  par t icu lar  s t a t ion  
tracking the  vehicle on the  outbound leg  of t he  t r a j ec to ry .  

A l s o  included i n  the  study are  uncertaint ies  i n  s t a t ion  location ( three 
quant i t ies  for each s t a t ion ) ,  uncertainty i n  s t a t ion  clock time (one for each 
s t a t i o n ) ,  and uncertainty i n  the  veloci ty  of l i g h t .  These uncertaint ies ,  a 
t o t a l  of 25 ,  a re  considered a s  random variables ,  and the  optimal estimation 
system produces estimates of these quant i t ies  along with the  estimate of the  
t r a j ec to ry .  Thus, the  system has a po ten t i a l  capabi l i ty  for "surveying" the  
tracking network and improving the  knowledge of the  veloci ty  of l i g h t .  

The l o  values of the  i n i t i a l  uncertaint ies  assumed i n  the r e s u l t s  given 
here a re  as follows: 

Stat ion locat ion 200 meters i n  each coordinate 

Stat ion clock time 2XlO-* sec 

Velocity of l i g h t  400 meters/sec 

Inject ion e r rors ,  assumed t o  be the  same as the  i n i t i a l  uncertaint ies  i n  
knowledge of t he  s t a t e ,  must be assumed i n  order t o  construct an i n i t i a l  es t i -  
mation e r ror  covariance matrix. Inject ion e r ro r s  assumed for the  r e s u l t s  
reported herein are as follows ( r m s  values) :  

4 



Altitude 3.2 km, 4.5 m/sec 

Range 4.8 km, 1.8 m/sec 

Crossrange 1 .6  km, 1 .3  m/sec 

Here, t he  range coordinate i s  defined as perpendicular t o  the  radius (or a l t i -  
tude) vector and i n  the  plane of the  veloci ty  vector .  
nate completes an orthogonal reference frame. 

The crossrange coordi- 

Velocity correction mechanization e r ro r s  must a l s o  be specified,  i n  r m s  
terms, t o  assess  the  performance of the  guidance system. The e r ro r s  assumed 
here are: 

Magnitude of correction 1 percent 

Dire e t  ion lo 

cut off 0.2 m/sec 

Velocity correction measurement o .01 m/sec 

THE COMPUTER PROGRAM 

The computer program i s  wr i t ten  i n  Fortran f o r  use on the  IBM 7094 and 
requires  almost a l l  of t he  32,000-word memory of t h i s  machine. 
could conceivably be used f o r  increased storage t o  permit expanding the pro- 
gram, t h i s  would r e s u l t  i n  much greater  computation times with the  present Ames 
system. The s ize  of t he  core capacity thus l imits the  complexity and number of 
features  which can be incorporated i n  the  program. Only the  performance sta- 
t i s t i c s  ( i . e . ,  covariance matrices) a re  computed; there  i s  no provision fo r  t he  
processing of e i the r  r e a l  or simulated observational data .  Besides the  compu- 
t a t i o n  of an estimation-error covariance matrix of 55 random variables ,  there  
i s  an integrat ion of a reference t r a j ec to ry  and per turbat ion equations t o  
obtain t r ans i t i on  matrices fo r  l i nea r  predict ion guidance, and the  computation 
of covariance matrices of midcourse veloci ty  corrections and s t a t e  deviations 
f r o m  nominal. The integrat ion i s  by means of a r e l a t i v e l y  simple fourth-order 
Runge-Kutta rout ine.  The accuracy of t h i s  routine i s  not suf f ic ien t  fo r  appli-  
cat ion t o  a r e a l  data-processing problem (e  .g . ,  pos i t ion  e r ro r  a t  t he  moon i s  
50 km, and upon re turn  t o  t h e  ear th ,  1,000 km). However, t h e  accuracy i s  ade- 
quate fo r  the  purposes of t h i s  study; i n  e f f ec t  it i s  as though we were simu- 
lating f l i g h t  i n  a gravi ty  f i e l d  which d i f f e r s  s l i gh t ly  from the  ac tua l  earth- 
moon-sun f i e l d  while s t i l l  preserving the  main propert ies  of t h i s  f i e l d .  

Although tape 

The schedule of  measurements and veloci ty  corrections i s  an input t o  the  
program. The schedule spec i f ies  when and what type of on-board observations 
and velocity corrections are t o  be made, and the  periods during which ground- 
based radar tracking i s  t o  be allowed. (Radar t racking might have t o  be dis- 
continued, f o r  instance,  when other operations require vehicle or ientat ion 
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incompatible with maintaining the  vehicle antenna al ined towards the  ear th .  ) 
In  a l l  the  schedules used here,  it w a s  assumed a r b i t r a r i l y  t h a t  there  would be 
no radar tracking during periods of on-board observation and veloci ty  correc- 
t i o n  a c t i v i t i e s .  During periods of allowed radar measurements, t h e  program 
provides f o r  determining which s t a t ions  a re  i n  view of t he  vehicle ( the  l ine-  
of-sight at  l e a s t  5' above ea r th  horizon and not intercepted by the  moon). 
Measurements are then assumed from the  f i rs t  three in-view s t a t ions  on the  l i s t  
of six provided as an input .  Measurements may be made only at  the  times of 
integrat ion s teps ,  these times a l s o  being inputs t o  the  program. 

RFSULTS AND DISCUSSION 

Numerical r e s u l t s  obtained from the  program described above are  described 
i n  t h i s  sect ion i n  terms of th ree  d i s t i n c t  aspects of the  problem: 
to ry  estimation, (2 )  guidance, and (3) estimation of t he  subsidiary uncertain- 
t i e s ,  such as s t a t i o n  locat ion and the  veloci ty  of l i g h t .  Some qual i ta t ive  
r e s u l t s  are a l s o  discussed regarding the  p rac t i cab i l i t y  of t he  Wiener-Kalman 
sequential  data processing technique as applied here .  

(1) t ra j ec -  

Trajectory Estimation 

Figures 3 t o  6 show the  t i m e  h i s t o r i e s  of t he  r m s  e r ro r s  i n  estimating 
the  posi t ion and veloci ty  of t he  vehicle f o r  various observation schedules. In  
f igures  3 and 4 a comparison i s  shown between the  estimation e r ro r  when only 
on-board theodol i te  measurements a re  made and when on-board, range, and range- 
r a t e  measurements (at in te rva ls  of 10 minutes) are made. The schedule of the- 
odol i te  observations (THEO) i s  diagrammed a t  the  top  of each f igure .  Earth 
observation periods a re  indicated by v e r t i c a l l y  barred blocks, and moon obser- 
vations by dots.  ?"ne times of scheduled veloci ty  corrections a re  indicated by 
arrows labeled V.C .  
veloci ty  corrections i n  the  schedule used fo r  a l l  t he  r e s u l t s  given here.  

There are a t o t a l  of 90 theodolite observations and 6 

The radar observation periods a re  indicated by the  pa t t e rn  of horizontal  
bars a t  the  top  of each f igure .  A s  has been noted, the  schedules used here 
embody the  assumption t h a t  radar tracking i s  blacked out during periods of on- 
board observations. 

The data i n  f igures  3 and 4 show t h a t  a t  l e a s t  an order of magnitude 
improvement i s  a t ta ined  by adding only r e l a t i v e l y  infrequent samples (every 
10 minutes) of range and range-rate tracking data from three s ta t ions  (Rosman, 
Johannesburg, and Carnarvon) t o  the  on-board observations. 

Figures 5 and 6 give some l imited r e s u l t s  t o  show the  e f f ec t  of increased 
amounts of tracking data .  The topmost curve i n  each f igure ,  repeated from 
f igures  3 and 4, i s  the  r m s  (posi t ion or veloci ty)  estimation e r ro r  fo r  a 
three-s ta t ion  t racking network, plus  on-board observations, with range and 
range-rate data sampled every 10 minutes. The second curve shows the  
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improvement when an addi t ional  three s ta t ions  ( H a w a i i ,  Houston, and Madrid) a re  
added t o  the  network. 
The improvement, due t o  the  la rger  amount of tracking data (510 measurements as 
compared t o  267), i s  s ignif icant  but not dramatic. 
improvement f o r  the  three-s ta t ion  network when range and range r a t e  a re  sampled 
once a minute, or approximately t e n  times as many data points  f o r  a given 
period of t racking.  The improvement i s  about 40 percent.  T h i s  run w a s  termi- 
nated a f t e r  48 hours of f l i g h t  when 1530 radar data points  had been simulated. 

(This run i s  fo r  only the  f i r s t  half  of the  f l i g h t . )  

The lower curve shows the  

A l l  t he  data shown so far are  fo r  s i tua t ions  i n  which it i s  assumed that  
each radar data point includes both a range and a range-rate measurement. The 
r e l a t ive  importance of these two types of data can be determined by computer 
runs i n  which f i r s t  range rate and then range data are excluded. A comparison 
of t he  r e s u l t s  obtained fo r  these assumptions i s  shown i n  f igure 7, which shows 
the  r m s  posi t ion estimation e r ro r  f o r  t he  three-s ta t ion  network plus theodol i te  
observation s i tua t ion .  It i s  seen t h a t  with only range information the  per- 
formance i s  v i r t u a l l y  the  same as  with both range and range-rate data (cf .  
f i g .  5 ) ,  and with only range-rate information, performance i s  roughly three  
times poorer. The conclusion i s  t h a t ,  fo r  the  e r ror  model assumed, most of t he  
t r a j ec to ry  estimation information i s  contained i n  the  range measurements, and 
for  a l l  p rac t i ca l  purposes range-rate measurements might a s  well  be omitted. 

Guidance System Performance 

For the  assessment of guidance system performance, the  r m s  end-point 
r e s u l t s  and t o t a l  rms midcourse veloci ty  correction must be obtained. Figure 8 
shows the  r m s  e r ror  i n  predicting the  end-point m i s s  f o r  the  s i tua t ions  of the- 
odolite observations only, and theodolite plus  three- s t a t ion  tracking every 
10 minutes. The break i n  each of the curves occurs a t  perilune because of t he  
change i n  def in i t ion  of end-point a t  t h i s  time (i .e . ,  on the  out-bound l eg  the  
end-point i s  perilune,  and on the  re turn  it i s  vacuum perigee) .  
of roughly an order of magnitude i s  s i m i l a r  t o  t h a t  shown i n  f igures  3 and 4 .  

The difference 

A summary of guidance performance i s  given i n  t ab le  I f o r  the  t w o  end- 
points ,  perilune and perigee.  Results a r e  shown f o r  three conditions: (1) on- 
board theodolite observations only (a t o t a l  of 90 observations); (2)  range and 
range-rate measurements only, using a network of th ree  s ta t ions  and a 10-minute 
sampling r a t e  (1107 observations); and (3) combined theodolite and radar meas- 
urements (90 on-board and 571 ground observations).  

The r e s u l t s  show t h a t  whereas using radar tracking (condition 2) ra ther  
than on-board observations (condition 1) reduces end-point uncertaint ies  by about 
one o r  two orders of magnitude, the  end-point deviations a re  controlled only a 
l i t t l e  l e s s  than twice as w e l l .  The reason i s  t h a t  t he  end-point deviation i s  
strongly dependent upon the  e r ro r  i n  applying the  f ina l  veloci ty  correction, 
and t h i s  i s  a function of t he  control  mechanization e r rors ,  not the  estimation 
e r ro r s .  The difference i n  the  t o t a l  veloci ty  correction required i s  almost 
insignif icant  i n  the  two cases. This indicates  t h a t  r e l a t ive ly  l i t t l e  f u e l  
penalty can be ascribed t o  the  omission of ground-based tracking data .  
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Condition 3, i n  which a combination of on-board and range and range-rate 
data i s  used, i s  seen t o  give s l i gh t ly  poorer results, mostly i n  regard t o  t h e  
uncertaint ies ,  than when range and range-rate data are used alone. This i s  
because there  are only about half  as many radar observations i n  t h i s  run as a 
r e s u l t  of t he  radar black-out assumed during on-board observation periods.  It 
might be pointed out t h a t  t h i s  assumption i s  a r b i t r a r y  and probably un rea l i s t i c  
for most appl icat ions.  

How far the  vehicle departs from i t s  nominal, or precalculated,  t r a j ec to ry  
during the  f l i g h t  i s  not an important measure of the  system performance. How- 
ever, t h i s  deviation i s  of some in t e re s t  when the  va l id i ty  of the l i n e a r i t y  
assumptions which underlie the  estimation equations i s  considered. The r m s  
posi t ion deviation i s  shown as a function of time i n  f igure 9.  
deviation i s  of t he  same character but i s  not shown.) 
appl icat ion of ve loc i ty  corrections f a i r l y  ea r ly  i n  the  outbound and r e tu rn  
legs  of t he  f l i g h t  i s  reasonably e f fec t ive  i n  keeping the  deviations within 
limits. The deviations shown i n  f igure 9 a re  not considered large enough t o  
produce l i n e a r i t y  problems. It i s  seen t h a t  there  i s  not a subs tan t ia l  differ-  
ence between the  conditions of on-board observations only and combined on-board 
and tracking s t a t ion  Observations. 

(The ve loc i ty  
It i s  seen that t h e  

Estimation of Subsidiary Uncertainties 

The subsidiary uncertaint ies  considered i n  t h i s  study are  e r rors  i n  the  
knowledge of the  s t a t ion  location, the  s t a t ion  clock time, and the veloci ty  of 
l i g h t .  B i a s  e r ro r s  i n  the  range and range-rate measurements can a l s o  be con- 
sidered i n  some circumstances t o  be i n  the  s a m e  c lass ,  although these a re  more 
t rans ien t  i n  character since they a re ,  a t  least i n  p a r t ,  affected by adjust-  
ments i n  the  "tuning" of t he  electronic  systems. 

Other e r ro r s  which may be equally important i n  some applications,  such as 
uncertaint ies  i n  the  astrodynamic constants, are not included. 

All t he  r e s u l t s  shown here a re  f o r  s i tua t ions  i n  which simultaneous range 
and range-rate data were assumed. However, it should be pointed out t h a t ,  a s  
i n  the  t r a j ec to ry  estimation s i tua t ion ,  most of t h e  information regarding the  
subsidiary uncertaint ies  comes from the range data, and the  range-rate data 
could be omitted with l i t t l e  e f f ec t  on the  r e s u l t s .  

Stat ion 1ocatis-n-estimation.- Figure 10 shows how the  r m s  uncertainty i n  
the  knowledge of t he  s t a t i o n  locations i s  reduced by means of data from a 
three-s ta t ion  network tracking the  circumlunar vehicle.  Samplings of range and 
range r a t e  a t  10-minute in te rva ls  a re  assumed, there  being a t o t a l  of 1107 
observations. 
percent.  

The uncertaint ies  a re  seen t o  be reduced by about 40 t o  50 

Similar data f o r  a four-orbit  tracking of a near-earth s a t e l l i t e  a t  200 km 
a l t i t ude  a re  shown i n  f igure  11. 
plings of range and range rate every minute, f o r  a t o t a l  of 54 observations. 

A s ix-s ta t ion network i s  assumed, with sam- 
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The data are shown only f o r  t he  s t a t ions  fo r  which the  poorest and bes t  
estimates are obtained. The reduction i n  uncertainty ranges from 61 percent 
for  Rosman t o  88 percent f o r  Johannesburg, t h e  reduction being pr inc ipa l ly  
determined by the  number of observations made from the  spec i f ic  s t a t ion .  In  
t h i s  run t he  vehicle never came within view of Madrid and thus no information 
about t h i s  s t a t ion  w a s  obtained. 

Obviously, tracking a t  r e l a t ive ly  small ranges i s  most e f fec t ive  i n  sur- 
veying the  s t a t ions .  
comes f romthe  ea r ly  pa r t  of t he  f l i g h t  while the  vehicle i s  close t o  the  
earth;  it i s  a l s o  noted t h a t  only 54 observations of the  near-earth s a t e l l i t e  
were more e f fec t ive  than the  1107 observations of the  circumlunar vehicle.  A n  
in te res t ing  point which shows up strongly i n  f igure 11 i s  t h a t  information 
about a par t icu lar  s t a t ion  i s  obtained not only from tracking data  from t h a t  
s t a t ion ,  but a l s o  from data from other s t a t ions  i n  t he  network, provided the  
f irst  s t a t ion  has already tracked the  vehicle.  
gulat ion e f f e c t .  

For t he  circumlunar tracking most of t he  information 

This might be termed a t r i an -  

Results fo r  t he  circumlunar vehicle runs i n  which theodol i te  observations 
and a three-s ta t ion  network were assumed a re  shown i n  f igure  12. The perform- 
ance i n  estimating s t a t ion  locat ion i s  not s o  good as t h a t  i n  t he  s i t ua t ion  
without on-board observations (cf.  f i g .  10) because there  a re  fewer radar obser- 
vations,  and these obviously contain the  most information about s t a t ion  
locat ion.  

Velocity of l i g h t  estimation.- In  f igure 13 i s  shown the  reduction i n  the  
uncertainty i n  the  veloci ty  of l i g h t  achieved by tracking the  circumlunar vehi- 
c l e  from a three-s ta t ion network with 10-minute spacing between measurements. 
A ra ther  s t r ik ing  improvement of almost 10 t o  1 i s  obtained. The majority of 
the  improvement occurs during t h e  ear ly  tracking while both the  uncertainty and 
the  range r a t e  a re  r e l a t ive ly  high. A second s igni f icant  drop i n  the  e r ro r  
occurs j u s t  as the  vehicle re turns  t o  view f rom behind the  moon. The physical 
reason for  t h i s  phenomenon i s  not known a t  t h i s  t ime. 

Similar data f o r  t he  runs i n  which theodol i te  observations were included 
are  shown i n  f igure 14 .  
alone because of the  smaller number of radar data points  (267 versus 531 on the  
outbound l e g ) .  
measurements i s  restored t o  5lO on the  outbound leg ,  and the  performance i s  
again as good as t h a t  without t he  interference from on-board observations. 

The performance i s  not so  good as fo r  tracking data 

However, with a s ix-s ta t ion  network the t o t a l  number of radar 

In  the  case of the  near-earth s a t e l l i t e ,  reduction i n  t h e  veloci ty  of 
l i g h t  uncertainty i s  ins igni f icant .  The r e s u l t s  are shown i n  f igure 15. O f  
course, there  were only 54 observations i n  t h i s  run, but t h e  major fac tor  
appears t o  be t h a t  t he  range and range r a t e  a re  much smaller f o r  t h e  near-earth 
t r a j ec to ry  than  f o r  t he  circumlunar t r a j ec to ry .  

Stat ion clock time estimation.- The s t a t ion  clock time uncer ta in t ies  
proved t o  be ins igni f icant  at  the  l e v e l  of 2XlO’* second r m s .  Even at 2X10-3 
second these uncertaint ies  have l i t t l e  e f f ec t  on the  system accuracy, and the  
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tracking data do not mater ia l ly  improve t h e  estimates of t he  clock e r ro r s .  
This i s  i l l u s t r a t e d  i n  f igure 16 f o r  t he  three-s ta t ion  t racking of the  near- 
ear th  s a t e l l i t e .  

Radar b i a s  estimation.- In  the  course of processing the  radar data, e s t i -  
mates are produced of t h e  biases  on the  range and range-rate measurements, 
along with the  estimates of t he  other uncertaint ies .  The accuracy of these 
estimates i s  influenced by the  magnitudes and time constants of t he  biases  as 
i l l u s t r a t e d  i n  f igures  17 and 18. These f igures  show the  rms er ro r s  i n  the  
estimates of b i a s  on the  range and range-rate measurements, respectively,  f o r  
t h e  Johannesburg tracking s ta t ion .  The s i tua t ion  i s  fo r  the  three-s ta t ion net- 
work tracking the  circumlunar vehicle,  plus  on-board theodol i te  observations. 
Results are shown for  (1) the  reference b i a s  s i tua t ion ,  (2)  twice the  reference 
b ias ,  and (3) b i a s  with a time constant t e n  times the  reference value. 

For the  range b ias ,  f igure 17 shows t h a t  the  system does not do a very 
good job of estimating the  bias ,  i n  t he  sense t h a t  t he  reduction i n  the  b i a s  
uncertainty i s  not s ign i f icant .  This means t h a t  r e l a t i v e l y  l i t t l e  information 
about range b i a s  i s  present i n  the  radar data .  With increased b ias ,  case ( e ) ,  
t he  system improves the  b i a s  estimate more on a percentage bas is  than f o r  t he  
reference case, but performance i s  s t i l l  not good. With increased time con- 
s tan t ,  case ( 3 ) ,  the  estimation performance i s  poorer than i n  the  reference 
case.  

For the  range-rate b i a s  ( f i g .  18) the  estimation performance i s  be t t e r  
than fo r  t he  range b i a s  but s t i l l  not what would be termed good. 
increased b ias ,  case (2), and increased time constant, case ( 3 ) ,  r e s u l t  i n  
improved percentage performance, indicat ing t h a t  both these changes increase 
the  range-rate b i a s  information i n  the  radar data .  The time h i s to r i e s  i n  f ig-  
ure 18 show t h a t  t he  uncertainty i n  the  b i a s  i s  reduced sharply during periods 
of radar tracking from the  s t a t i o n  concerned and then gradually increases when 
there  i s  no t racking.  This increase occurs because the  e r ro r  model i s  based on 
the  assumption t h a t  there  i s  a slow drift  i n  the  b i a s .  When the  d r i f t  i s  
slower ( i . e . ,  a longer time constant) ,  it i s  seen t h a t  the  system i s  able t o  
estimate the  b i a s  more accurately because the  uncertainty does not increase s o  
much between tracking periods.  

Both 

Figure 19 shows the e f f ec t  of differences i n  the  magnitude and time con- 
stants of b i a s  e r ro r s  on the  estimation of vehicle posi t ion.  Increased b i a s  
degrades the  performance and increased time constant improves performance, but 
not subs tan t ia l ly  i n  e i the r  case. The e f f ec t  of b i a s  on veloci ty  estimation i s  
r e l a t ive ly  inconsequential and is ,  therefore ,  not shown. 

Performance of the  Computer Program 

Experience with the  present program has not as ye t  given def in i t ive  
answers t o  questions regarding the  p rac t i cab i l i t y  of the  Wiener-Kahn sequen- 
t i a l  data processing technique. However, it can be recorded t h a t  no 
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d i f f i c u l t i e s  have been encountered with round-off or other computational 
problems, even i n  the  handling of 55 stochast ic  s t a t e  var iables  and over a 
thousand data points .  

Running t i m e  for the  program i s  found t o  be determined pr inc ipa l ly  by the  
number of observation data points .  Approximately 1 .4  seconds (on the  IBM 7094) 
i s  required per observation, so  t h a t  computation time can become f a i r l y  lengthy 
i n  the  processing of a large mass of data .  However, considering t h a t  t h i s  i s  
only a f irst  attempt t o  produce so  complex a program of t h i s  type, one may 
reasonably assume t h a t  savings i n  operating time could be achieved by ref ine-  
ment of the  program. Also, some of the  operating time i s  known t o  be due t o  
ce r t a in  inef f ic ienc ies  i n  the  present Ames system and should not be charged 
against  the  program. 

CONCLUDING REMARKS 

It i s  seen that radar data are generally grea t ly  superior t o  on-board 
observations f o r  estimating the  t r a j ec to ry .  However, r e l a t ive ly  l i t t l e  mid- 
course correction f u e l  i s  saved by using the  radar data,  and control  of end- 
point conditions i s  not markedly enhanced. This i s  due pr inc ipa l ly  t o  the  
strong influence of t he  veloci ty  correction mechanization e r ro r s .  In  other 
words, for t he  magnitudes of e r ro r s  assumed i n  t h i s  study, on-board observa- 
t i ons  alone contain suf f ic ien t  information ( s t a t i s t i c a l l y  speaking) t o  deter-  
mine the  t r a j ec to ry  as accurately as it can be controlled.  It might be noted 
t h a t  a s l igh t ly  d i f fe ren t  veloci ty  correction schedule, optimized for t he  s i t u -  
a t ion  i n  which radar data a re  used,would y i e ld  somewhat be t t e r  performance, but 
probably not enough b e t t e r  t o  a l t e r  t h i s  conclusion. 

A s  t o  t he  estimation of the  subsidiary uncertaint ies ,  the  r e s u l t s  have 
shown t h a t  optimal use of radar tracking data can be a powerful t o o l  i n  a wide 
assortment of subsidiary measurement and ca l ibra t ion  tasks .  In  f a c t ,  such 
tasks  can be s igni f icant  i n  t h e i r  own r i g h t .  Surveying radar s t a t ion  loca- 
t i ons ,  ca l ibra t ing  the  radar systems, and measuring the  velocity of l i g h t  more 
accurately can presumably reduce the  uncer ta in t ies  i n  these quant i t ies  t o  a 
l e v e l  a t  which they are  no longer s ignif icant  sources of e r ror  fo r  subsequent 
missions. 

I n  the  assessment of t he  value of radar data,  it has been seen t h a t  range 
data  contain much more information than do range-rate data,  a t  l e a s t  f o r  t he  
magnitudes of e r ro r s  assumed i n  t h i s  study. It should, therefore,  be ser iously 
questioned as t o  whether it i s  worth implementing range-rate measurements when 
a good ranging radar i s  avai lable ,  unless such measurements can be made with 
much greater  accuracy than assumed herein.  

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field,  C a l i f . ,  Jan. 15, 1964 

11 



REFERENCES 

1. Smith, Gerald L., Schmidt, Stanley F., and McGee, Leonard A. :  Application 
of S t a t i s t i c a l  F i l t e r  Theory t o  the  O p t i m a l  Estimation of Posit ion and 
Velocity On Board a Circumlunar Vehicle. NASA TR R-135, 1962. 

2. McLean, John D . ,  Schmidt, Stanley F., and McGee, Leonard A , :  O p t i m a l  
F i l t e r ing  and Linear Prediction Applied t o  a Midcourse Navigation System 
for  the  Circwnlunar Mission. NASA TN D-1208, 1962. 

3 .  Smith, Gerald L.: Secondary Errors and Off-Design Conditions i n  O p t i m a l  
Estimation of Space Vehicle Trajector ies .  NASA TN D-2l29, 1964. 

12 
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Deviations 

from nominal 
Uncertainties 

i n  the estimates Total corrective 
velocity, 

meters/sec (number of observations) ~ position, Velocity , 
meters /sec 

Posit ion , 
km 

Velocity, 
meters / se c 

25 -9 4.6 24.8 
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-5 
Range and range rate only 

three s ta t ions (531) 13.5 ,- 
.b 

On-board, range, and 
range rate (45,267) 13.6 9.9 1.9 1.1 

Results a t  perigee, r m s  values 

32.5 1 26.4 18.5 1 13.0 1 34.4 I 
1 18.2 1 17.2 1 .2 1 .2 I Range and range rate only 

three s ta t ions (1107) 
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Figure 1.- Radar tracking network and ear th  track of circumlunar t ra jectory.  
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Figure 2 .- Radar e r ro r s  (Johannesburg s t a t i o n )  . 
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Figure 10.- Estimation of radar s t a t i o n  loca t ions  from radar t racking of 
circumlunar vehicle .  
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Figure 12.-  Estimation of radar s t a t i o n  locat ions from combined radar  tracking 
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Figure 15.- Estimation of the  veloci ty  of l i g h t  from radar tracking of near- 
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Figure 16.- Estimation of radar s t a t ion  clock time. 
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17 .- Est imat ion  of range measurement b i a s .  
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Figure 18 .- Estimation of range-rate measurement bias. 
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Figure 19.- Effect of radar bias on vehicle posi-tion estimation. 
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